Conformational control of intramolecular arene stacking in ferrocene complexes bearing tert-butyl and pentafluorophenyl substituents

Paul A. Deck ${ }^{\text {a,* }}$, Caleb E. Kroll ${ }^{\text {b,1 }}$, W. Gary Hollis Jr. ${ }^{\text {b }}$, Frank R. Fronczek ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212, USA
${ }^{\mathrm{b}}$ Department of Chemistry, Roanoke College, Salem, VA 24153, USA
${ }^{\text {c }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Received 13 November 2000; received in revised form 20 December 2000; accepted 27 December 2000

Abstract

The reaction of sodium tert-butylcyclopentadienide with $\mathrm{C}_{6} \mathrm{~F}_{6}$ and NaH in THF affords either 1-pentafluorophenyl-3-tertbutylcyclopentadiene (1, as a mixture of double-bond regioisomers) or 1,2-bis(pentafluorophenyl)-4-tert-butylcyclopentadiene (2), depending on the reaction conditions. Treatment of 1 with NaH in THF affords sodium 1-pentafluorophenyl-3-tert-butylcyclopentadienide (3). Treatment of 2 with NaH in THF affords sodium 1,2-bis(pentafluorophenyl)-4-tert-butyl-cyclopentadienide (4). The reaction of the monoarylated ligand (3, two equivalents) with FeBr_{2} in THF affords $1,1^{\prime}$-bis(pentafluorophenyl)- $3,3^{\prime}$-di-tert-butylferrocene as two diastereomers (meso-5 and rac-5), which were separated by fractional crystallization from hexane. The X-ray crystal structure of rac-5 reveals a conformation in which the two opposing tert-butyl substituents are splayed, enabling transannular stacking of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. In meso-5, steric repulsion of the two tert-butyl substituents prevents intramolecular arene stacking. The reaction of the diarylated ligand (4, two equivalents) with FeBr_{2} in THF affords $1,1^{\prime}, 2,2^{\prime}$-tetrakis(pen-tafluorophenyl)-4,4'-di-tert-butylferrocene (6). The crystal structure of 6 reveals no arene stacking. Variable-temperature NMR studies showed that the $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ torsional barrier $\left(\Delta H^{\ddagger}\right)$ of 6 is $17(1) \mathrm{kcal} \mathrm{mol}^{-1}$ in dichloromethane- d_{2} solution. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Crystal engineering; Arene stacking; Ferrocene; Pentafluorophenyl; Conformational analysis

1. Introduction

Arene stacking is a persistent theme in the solid-state structures of metallocenes and other cyclopentadienyl (Cp) complexes bearing pentafluorophenyl $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ substituents [1,2]. Hughes and co-workers have rationalized intramolecular arene stacking in the crystal structures of $1,1^{\prime}$-diarylferrocenes (aryl = phenyl, pentafluorophenyl, or one of each) in terms of fundamental crystal engineering concepts [3]. As a part of our continuing study of the synthesis and reactivity of $\mathrm{C}_{6} \mathrm{~F}_{5}$-substituted Cp complexes [4], we aim to explore the possibility of

[^0]controlling arene stacking through rational structural modification of organometallic complexes.

In this report, we show that a bulky tert-butyl ($t-\mathrm{Bu}$) group on cyclopentadiene effects complete regiocontrol over the subsequent attachment of one or two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. We then describe the synthesis of ferrocenes in which each Cp ligand bears one t - Bu group and one or two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. We then show, using crystallographic data, how transannular steric interactions of the $t-\mathrm{Bu}$ groups either enable or prohibit $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ conformations in which arene stacking can occur, depending on their stereochemical arrangement. We also compare the enthalpy of activation for $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ torsion of $1,1^{\prime}, 2,2^{\prime}$ - tetrakis(pentafluorophenyl)-4,4'-di-tert-butylferrocene (6) with two related complexes, $1,1^{\prime}, 2,2^{\prime}, 4,4^{\prime}-$ hexakis(pentafluorophenyl)ferrocene or $1,1^{\prime}, 2,2^{\prime}, 4,4^{\prime}-$ hexa(tert-butyl)ferrocene.

2. Experimental

2.1. General procedures

Standard inert-atmosphere techniques were used for all reactions [5]. Hexafluorobenzene was used as received from Oakwood. Sodium tert-butylcyclopentadienide and potassium tert-butylcyclopentadienide were prepared from tert-butylcyclopentadiene (Aldrich, freshly distilled prior to use) and NaH or KH , respectively, in THF. NMR experiments were performed using JEOL ECP500 and Varian U400 instruments. Dynamic NMR measurements were carried out on the Varian U400, and the temperature scale was calibrated using a MeOH standard. THF- d_{8} was vapor-transferred into resealable NMR tubes from $\mathrm{Na}-\mathrm{K}$ alloy. ${ }^{19} \mathrm{~F}$ NMR spectra were referenced to external $\mathrm{C}_{6} \mathrm{~F}_{6}$ in CDCl_{3} at -163.00 ppm . $\left\{{ }^{19} \mathrm{~F}\right\}{ }^{13} \mathrm{C}$-NMR spectra were particularly useful for resolving signals in the aromatic C-F regions where extensive ${ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}$ couplings in the ${ }^{1} \mathrm{H}$-decoupled spectra prevented us from distinguishing closely spaced signals. Furthermore, ${ }^{19} \mathrm{~F}$ decoupling provides substantial NOE enhancement of signals that are ordinarily weak under the usual conditions of broadband ${ }^{1} \mathrm{H}$ decoupling. C-F coupling constants were approximated from observed splittings in the $\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra. Elemental analyses were performed by Desert Analytics (Tucson, AZ).

2.2. 1-(Pentafluorophenyl)-3-tert-butylcyclopentadiene

 (1)A mixture of sodium tert-butylcyclopentadienide $(1.44 \mathrm{~g}, 10.0 \mathrm{mmol})$, hexafluorobenzene $(3.72 \mathrm{~g}, 20.0$ $\mathrm{mmol})$, sodium hydride $(0.48 \mathrm{~g}, 20 \mathrm{mmol})$ and THF (100 ml) was stirred at $25^{\circ} \mathrm{C}$ for 20 h . After removing the solvent, hexane (100 ml) and water (50 ml , dropwise at first) were added to hydrolyze the mixture. The biphasic mixture was filtered through Celite and then separated. The aqueous layer was extracted with 25 ml of hexanes. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered, and evaporated to afford 1.85 g of a brown oil. TLC analysis (silica gel, $250 \mu \mathrm{~m}$, hexanes) of the oil showed two major products: compound $\mathbf{1}$ at $R_{\mathrm{f}}=0.57$ and compound 2 at $R_{\mathrm{f}}=0.47$. The crude oil was subjected to flash chromatography on silica gel ($40 \times 4 \mathrm{~cm}^{2}$ column), eluting with hexanes to afford 1.02 g (3.54 $\mathrm{mmol}, 35 \%$) of pure $\mathbf{1}$ as a colorless oil. A subsequent fraction afforded $160 \mathrm{mg}(0.4 \mathrm{mmol}, 4 \%)$ of pure 2. Spectroscopic analysis showed that $\mathbf{1}$ is obtained as a mixture of three double-bond regioisomers ($\mathbf{1 a}, 53 \%$; 1b, 33%; and 1c, 14%). Assignments are tentative. ${ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}\right): \delta \mathbf{1 a}, 7.24(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~m}, 1 \mathrm{H}), 3.48$ $(\mathrm{s}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ; \mathbf{1 b}, 7.08(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~m}, 1 \mathrm{H})$, $3.47(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ; 1 \mathrm{c}, 6.66(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~m}$,
$1 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 1a, $-141.26(\mathrm{~m}, 2 \mathrm{~F}),-159.08\left(\mathrm{t}, 1 \mathrm{~F},{ }^{3} \mathrm{~J}=21 \mathrm{~Hz}\right)$, $-163.86(\mathrm{~m}, 2 \mathrm{~F}) ; \mathbf{1 b},-141.75(\mathrm{~m}, 2 \mathrm{~F}),-159.77(\mathrm{t}$, $\left.1 \mathrm{~F},{ }^{3} \mathrm{~J}=21 \mathrm{~Hz}\right),-164.02(\mathrm{~m}, 2 \mathrm{~F}) ; 1 \mathrm{c},-141.38(\mathrm{~m}$, $2 \mathrm{~F}),-157.65\left(\mathrm{t}, 1 \mathrm{~F},{ }^{3} \mathrm{~J}=21 \mathrm{~Hz}\right),-163.52(\mathrm{~m}, 2 \mathrm{~F})$. Anal. Found: C, $62.24 ; \mathrm{H}, 4.37$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{5}$: C, 62.50 ; H, 4.55%.

2.3. 1,2-Bis(pentafluorophenyl)-4-tert-butylcyclopentadiene (2)

A mixture of potassium tert-butylcyclopentadienide $(3.20 \mathrm{~g}, 20.0 \mathrm{mmol})$, hexafluorobenzene $(17.0 \mathrm{~g}, 91.4$ mmol), sodium hydride ($2.4 \mathrm{~g}, 0.10 \mathrm{~mol}$) and THF (100 ml) was stirred at $65{ }^{\circ} \mathrm{C}$ for 60 h . After removing the solvent, hexane (100 ml) and water (50 ml , dropwise at first) were added to hydrolyze the mixture. The biphasic mixture was filtered through Celite and then separated. The aqueous layer was extracted with 25 ml of hexanes. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered, and evaporated to afford 6.07 g of a yellow oil. The crude oil was subjected to flash chromatography on silica gel $\left(40 \times 7 \mathrm{~cm}^{2}\right)$, eluting with hexanes to afford first 230 mg ($0.80 \mathrm{mmol}, 4 \%$) of $\mathbf{1}$, and then $4.44 \mathrm{~g}(9.8 \mathrm{mmol}, 49 \%)$ of pure 2. Because $\mathbf{2}$ is initially formed as a viscous oil that retains solvent, we waited until the oil spontaneously crystallized (several hours) and then sublimed a small portion (0.05 Torr, $80^{\circ} \mathrm{C}$) to obtain an analytical sample. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H})$, $1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-140.42(\mathrm{~m}, 2 \mathrm{~F})$, $-141.10(\mathrm{~m}, 2 \mathrm{~F}),-154.68\left(\mathrm{t}, 1 \mathrm{~F},{ }^{3} \mathrm{~J}=21 \mathrm{~Hz}\right),-$ $155.36\left(\mathrm{t}, 1 \mathrm{~F},{ }^{3} J=21 \mathrm{~Hz}\right),-162.01(\mathrm{~m}, 2 \mathrm{~F}),-162.16$ (m, 2F). $\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 163.0(\mathrm{~s}, C-t-\mathrm{Bu})$, $133.3\left(\mathrm{~s}, C-\mathrm{C}_{6} \mathrm{~F}_{5}\right), 129.0\left(\mathrm{t}, C-\mathrm{C}_{6} \mathrm{~F}_{5},{ }^{3} J_{\mathrm{CF}}=2 \mathrm{~Hz}\right.$), 126.0 (s, CH), $44.1\left(\mathrm{t}, \mathrm{CH}_{2},{ }^{4} J_{\mathrm{CF}}=2 \mathrm{~Hz}\right.$), 33.6 ($\mathrm{s}, \mathrm{CMe}_{3}$), 30.6 (s, CH_{3}). $\left\{{ }^{19} \mathrm{~F}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 143.9$ (s, CF), 143.8 (s, CF), 140.8 (s, CF), 140.3 (s, CF), 137.76 (s , CF), 137.72 (s, CF), 111.6 ($\mathrm{s}, \mathrm{C}_{6} \mathrm{~F}_{5}$ ipso), $111.2\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ ipso), $44.1\left(\mathrm{td}, \mathrm{CH}_{2},{ }^{1} J_{\mathrm{CH}}=127 \mathrm{~Hz},{ }^{4} J_{\mathrm{CH}}=9 \mathrm{~Hz}\right.$), 30.6 (q, $\mathrm{CH}_{3},{ }^{1} J_{\mathrm{CH}}=126 \mathrm{~Hz}$). Anal. Found: C, 55.47 ; H, 2.33. Calc. for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~F}_{10}$: C, $55.52 ; \mathrm{H}, 2.66 \%$.

2.4. Sodium 1-pentafluorophenyl-3-tert-butylcyclopentadienide (3)

A mixture of $\mathbf{1}(1.02 \mathrm{~g}, 3.54 \mathrm{mmol})$, sodium hydride ($127 \mathrm{mg}, 5.31 \mathrm{mmol}$), and THF (50 ml) was stirred at $25{ }^{\circ} \mathrm{C}$ for 15 h . The dark mixture was filtered, the solvent was evaporated, and then most of the residual THF was removed by heating the crude product at $60{ }^{\circ} \mathrm{C}$ under a high vacuum $\left(6 \times 10^{-6} \mathrm{~mm}\right)$ for 6 h to afford a dark, sticky solid as the sole product in approximately quantitative yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{THF}-d_{8}\right): \delta$ $6.35(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ (THF- d_{8}): $\delta-146.12(\mathrm{~m}, 2 \mathrm{~F}),-167.79(\mathrm{~m}, 2 \mathrm{~F}),-$
174.92 (tt, $\left.1 \mathrm{~F},{ }^{3} J=2 \mathrm{~Hz},{ }^{4} J=6 \mathrm{~Hz}\right) .\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}$ (THF- d_{8}): $\delta 108.2\left(\mathrm{t}, \mathrm{CH},{ }^{4} J_{\mathrm{CF}}=8 \mathrm{~Hz}\right.$), $105.3(\mathrm{t}, \mathrm{CH}$, $\left.{ }^{5} J=3 \mathrm{~Hz}\right), 104.7\left(\mathrm{t}, \mathrm{CH},{ }^{4} J_{\mathrm{CF}}=8 \mathrm{~Hz}\right), 33.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, 32.6 (s, CMe_{3}). Satisfactory microanalytical data were not obtained. ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra (Figs. S1 and S2) are available from the corresponding author as evidence of substantial purity.

2.5. Sodium 1,2-bis(pentafluorophenyl)-4-tert-butylcyclopentadiene (4)

A mixture of 2 ($3.37 \mathrm{~g}, 7.42 \mathrm{mmol}$), sodium hydride ($0.27 \mathrm{~g}, 11 \mathrm{mmol}$), and THF (100 ml) was stirred at $25^{\circ} \mathrm{C}$ for 15 h . The resulting dark mixture was filtered, the filtrate was evaporated, and the residual THF was removed by heating the crude product at $80^{\circ} \mathrm{C}$ under a high vacuum $\left(6 \times 10^{-6} \mathrm{~mm}\right)$ for 12 h to afford a gray solid (quantitative). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (THF- d_{8}): $\delta 6.08(\mathrm{~s}, 2 \mathrm{H}$), $1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{THF}-d_{8}\right): \delta-146.81(\mathrm{~m}, 4 \mathrm{H})$, $-168.78(\mathrm{~m}, 4 \mathrm{H}),-170.81\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J=21 \mathrm{~Hz},{ }^{4} J=2\right.$ Hz). $\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{THF}-d_{8}\right): \delta 144.2\left(\mathrm{~d}, \mathrm{CF},{ }^{1} J_{\mathrm{CF}}=\right.$ $252 \mathrm{~Hz}), 138.4\left(\mathrm{~d}, \mathrm{CF},{ }^{1} J_{\mathrm{CF}}=248 \mathrm{~Hz}\right), 136.2(\mathrm{~d}, \mathrm{CF}$, $\left.{ }^{1} J=242 \mathrm{~Hz}\right), 136.2\left(\mathrm{~s}, C-\mathrm{C}_{6} \mathrm{~F}_{5}\right), 120.4\left(\mathrm{t}, \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ ipso, ${ }^{2} J_{\mathrm{CF}}=19 \mathrm{~Hz}$), $109.3(\mathrm{~s}, \mathrm{CH}), 101.2(\mathrm{~s}, C-t-\mathrm{Bu}), 33.3(\mathrm{~s}$, $\left.\mathrm{CH}_{3}\right), 32.4\left(\mathrm{CMe}_{3}\right) .\left\{{ }^{19} \mathrm{~F}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{THF}-d_{8}\right): \delta 144.2$ (s, CF), 138.4 (s, CF), 136.2 (s, CF), 120.4 ($\mathrm{s}, \mathrm{C}_{6} \mathrm{~F}_{5}$ ipso), 109.3 (dd, $\mathrm{CH},{ }^{1} J_{\mathrm{CH}}=156 \mathrm{~Hz},{ }^{4} J_{\mathrm{CH}}=8 \mathrm{~Hz}$), $101.2\left(\mathrm{t}, C-t-\mathrm{Bu},{ }^{2} J_{\mathrm{CH}}=7 \mathrm{~Hz}\right), 33.3\left(\mathrm{q}, \mathrm{CH}_{3},{ }^{1} J_{\mathrm{CH}}=\right.$ $126 \mathrm{~Hz}), 32.4\left(\mathrm{~s}, C \mathrm{Me}_{3}\right)$. Satisfactory microanalytical data were not obtained. ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra (Figs. S3 and S4) are available from the corresponding author as evidence of substantial purity.

2.6. 1,1'-Bis(pentafluorophenyl)-3,3'-di-tertbutylferrocene (5)

A solution of 3 (3.54 mmol) and iron(II) bromide ($350 \mathrm{mg}, 1.60 \mathrm{mmol}$) in THF (100 ml) was stirred at $25^{\circ} \mathrm{C}$ for 6 h . The solvent was evaporated to afford a dark residue. Benzene (75 ml) and water (25 ml) were added, and the biphasic mixture was filtered through Celite, which was rinsed with 100 ml of hexanes. The biphasic mixture was then separated, and the aqueous layer was extracted with 20 ml of hexanes. The combined organic layers were washed with brine (3×20 ml), dried over anhydrous magnesium sulfate, filtered, and evaporated to afford $0.98 \mathrm{~g}(1.56 \mathrm{mmol}, 97 \%)$ of a red-orange crystalline solid. TLC analysis (silica, 250 $\mu \mathrm{m}$, hexanes) showed a single red spot ($R_{\mathrm{f}}=0.35$) and traces of the hydrolyzed ligand ($1, R_{\mathrm{f}}=0.57$), suggesting that meso- 5 and rac-5 could not be separated by flash chromatography. Instead, the crude product (5) was fractionally crystallized from about 10 ml of hexanes, reducing the mother liquors by half for each successive crop. The first crop afforded $190 \mathrm{mg}(0.30$ $\mathrm{mmol}, 19 \%$) of pure meso-5, while the second crop
afforded $132 \mathrm{mg}(0.21 \mathrm{mmol}, 13 \%)$ of pure rac-5. In an alternating fashion, further crops enabled the recovery of additional small amounts of each isomer. Purity for each compound was confirmed by ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$-NMR, while the structural assignments were confirmed by single-crystal X-ray diffraction.

Data for meso-5: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.43(\mathrm{~m}, 2 \mathrm{H})$, $4.40(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 18 \mathrm{H}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta-140.35(\mathrm{~m}, 4 \mathrm{~F}),-158.41\left(\mathrm{t}, 2 \mathrm{~F},{ }^{3} \mathrm{~J}=21\right.$ $\mathrm{Hz}),-163.44(\mathrm{~m}, 4 \mathrm{~F}) .\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $104.4\left(\mathrm{~s}, C-\mathrm{C}_{6} \mathrm{~F}_{5}\right), 71.8(\mathrm{~s}, C-t-\mathrm{Bu}), 71.5\left(\mathrm{t}, \mathrm{CH},{ }^{4} J_{\mathrm{CF}}=\right.$ $5 \mathrm{~Hz}), 68.7(\mathrm{~s}, \mathrm{CH}), 68.3\left(\mathrm{t}, \mathrm{CH},{ }^{4} J_{\mathrm{CF}}=6 \mathrm{~Hz}\right), 31.4(\mathrm{~s}$, CH_{3}), 30.6 (s, CMe_{3}). $\left\{{ }^{19} \mathrm{~F}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 144.4$ (s, CF), 138.7 (s, CF), 138.0 (s, CF), 114.5 ($\mathrm{C}_{6} \mathrm{~F}_{5}$ ipso). Anal. Found: C, 57.35; H, 3.82. Calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{10} \mathrm{Fe}$: C, 57.16 ; H, 3.84%.

Data for rac-5: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.90(\mathrm{~m}, 2 \mathrm{H})$, 4.68 (m, 2H), $4.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $-139.68(\mathrm{~m}, 4 \mathrm{~F}),-159.2\left(\mathrm{t}, 2 \mathrm{~F},{ }^{3} \mathrm{~J}=21 \mathrm{~Hz}\right),-$ $163.88(\mathrm{~m}, 4 \mathrm{~F}) .\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 104.8(\mathrm{~s}$, $C-\mathrm{C}_{6} \mathrm{~F}_{5}$), $71.7(\mathrm{~s}, C-t-\mathrm{Bu}), 70.4\left(\mathrm{t}, \mathrm{CH},{ }^{4} J_{\mathrm{CF}}=6 \mathrm{~Hz}\right)$, $68.6(\mathrm{~s}, \mathrm{CH}), 67.6\left(\mathrm{t}, \mathrm{CH},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=7 \mathrm{~Hz}\right), 31.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, 30.7 (s, CMe ${ }_{3}$). $\left\{{ }^{19} \mathrm{~F}\right\}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 144.1$ (s, CF), 138.4 (s, CF), 137.6 ($\mathrm{s}, \mathrm{CF}), 112.7\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ ipso). Anal. Found: C, 57.09; H, 3.68. Calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{10} \mathrm{Fe}$: C, $57.16 ; \mathrm{H}, 3.84 \%$.

2.7. 1, 1', 2, 2'-Tetrakis(pentafluorophenyl)-4,4'-di-tert-butylferrocene (6)

A solution of $4(3.40 \mathrm{~g}, 7.14 \mathrm{mmol})$ and $\mathrm{FeBr}_{2}(721$ $\mathrm{mg}, 3.34 \mathrm{mmol})$ in THF (100 ml) was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . The solvent was evaporated to afford a red residue. The residue was dissolved in 100 ml of benzene and filtered through a bed of neutral alumina (30×10 mm^{2}), using 100 ml of hexanes to elute all of the red product. The dark red filtrate was evaporated to afford a red crystalline solid, which was rinsed with pentane ($2 \times 5 \mathrm{ml}$) and dried under vacuum to afford 3.20 g ($3.32 \mathrm{mmol}, 98 \%$) of a dark red solid. An analytical sample was obtained by recrystallization from hexanes. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 295 \mathrm{~K}\right): \delta 4.86$ (br s, 2H), 4.78 (br s, 2H), 1.11 ($\mathrm{s}, 18 \mathrm{H}$). ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 295 \mathrm{~K}\right): \delta$ -139.89 (br, 4F), -140.64 (m, 4F), -159.30 (t, 2F, $\left.{ }^{3} J_{\mathrm{FF}}=21 \mathrm{~Hz}\right),-160.28\left(\mathrm{t}, 2 \mathrm{~F},{ }^{3} \mathrm{~J}=21 \mathrm{~Hz}\right),-166.70$ (m, 4F), -167.97 (m, 4F). Anal. Found: C, 52.04; H, 2.23. Calc. for $\mathrm{C}_{42} \mathrm{H}_{22} \mathrm{~F}_{20} \mathrm{Fe}$: C, $52.41 ; \mathrm{H}, 2.30 \%$.

2.8. Crystallography

Crystals of meso-5 and rac-5 were obtained by cooling concentrated hexanes solutions to $-5^{\circ} \mathrm{C}$ for 24 h . Crystals of 6 obtained from hexanes revealed disordered solvent molecules that were difficult to model. Superior crystals were obtained by cooling a concentrated CDCl_{3} solution of 6 to $-5{ }^{\circ} \mathrm{C}$ for 2 days.

Relevant crystal data are assembled in Table 1. Details of the crystallographic experiments as well as complete tables of metric parameters are available from the corresponding author.

3. Results and discussion

3.1. Ligand synthesis

We showed earlier that Cp anions react with perfluoroarenes in nucleophilic aromatic substitution reactions to afford fluoroarylated cyclopentadienes [4]. In the present study, we started with tert-butylcyclopentadiene in order to examine the effect of the bulky $t-\mathrm{Bu}$ group on the regioselectivity of this process. Scheme 1 shows that this reaction procedes with complete regioselectivity for arylation distal to the tert-butyl group. The ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra of the crude monoarylation product (1) revealed the presence of three distal double-bond regioisomers in a ratio of about 5:3:1. Additional isomers would require either (a) attaching the aryl group proximal to the $t-\mathrm{Bu}$ group,
which is apparently prohibited by steric congestion in the nucleophilic aromatic substitution transition state, or (b) placing the aryl group, the t - Bu group, or both on the sp^{3}-hybridized carbon atom of the cyclopentadiene. Moving the aryl group to the sp^{3}-hybridized position would disrupt conjugation, while moving the $t-\mathrm{Bu}$ group to the sp^{3}-hybridized position would violate Saytzeff's rule. Regarding the precise spectral assignments, we were unable to further distinguish unambiguously which ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra signals corresponded to each of the three isomers. Selectivity for monoarylation or diarylation is achieved by varying the reaction conditions. At $25{ }^{\circ} \mathrm{C}(20-40 \mathrm{~h})$, the monoarylated cyclopentadiene (1) is the major product, whereas a longer reaction (60 h) at $65^{\circ} \mathrm{C}$ affords nearly pure diarylated product (2), both in moderate yields. The two products ($\mathbf{1}$ and $\mathbf{2}$) are readily separated and purified by silica gel chromatography. For the reasons outlined above, the diarylated cyclopentadiene (2) is obtained as a single regioisomer.

As shown in Scheme 1, both of the dienes (1 and 2) are readily converted to the corresponding sodium salts in essentially quantitative yields. Formation of a single

Table 1
Crystallographic data

Compound	meso-5	rac-5	6
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{10} \mathrm{Fe}$	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{10} \mathrm{Fe}$	$\mathrm{C}_{42} \mathrm{H}_{22} \mathrm{~F}_{20} \mathrm{Fe} \cdot \mathrm{CDCl}_{3}$
Formula weight	630.34	630.34	1081.81
Diffractometer	Nonius Kappa CCD	Nonius Kappa CCD	Nonius Kappa CCD
Crystal size (mm)	$0.28 \times 0.27 \times 0.12$	$0.35 \times 0.25 \times 0.22$	$0.35 \times 0.25 \times 0.08$
Crystal system	Monoclinic	Monoclinic	Triclinic
Unit cell dimensions			
$a(\mathrm{~A})$	10.0450(3)	14.5540(3)	11.1680(2)
b (${ }_{\text {® }}$)	8.9440(2)	12.6950(4)	20.0280(6)
$c(\AA)$	29.5860(8)	14.4570(4)	20.2450(6)
$\alpha\left({ }^{\circ}\right)$			70.8390(12)
$\beta\left({ }^{\circ}\right)$	91.0590(14)	95.6590(17)	80.4250(17)
$\gamma\left({ }^{\circ}\right)$			81.9660(18)
$V\left(\AA^{3}\right)$	2657.63(12)	2658.10(12)	4200.1(2)
Space group	$P 2_{1 / c}$ (no. 14)	$P 2_{1} / c$ (no. 14)	$P \overline{1}$ (no. 2)
Z	4	4	4
$D_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.575	1.575	1.711
Absorption coefficient (mm^{-1})	0.7	0.7	0.7
$F(000)$	1280	1280	2152
$\lambda\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)(\mathrm{A})$	0.71073	0.71073	0.71073
Temperature (K)	120	120	120
Theta range for data collection (${ }^{\circ}$)	2.7-32.0	2.6-30.0	2.5-30.0
No. of reflections collected	21967	12876	43374
No. of independent reflections	9125	7739	24072
Absorption correction method	Multi-scan	Multi-scan	Multi-scan
Max/min transmission	0.925, 0.806	$0.869,0.832$	0.948, 0.828
H treatment	Constrained	Constrained	Constrained
Data/restraints/parameters	9125/0/376	7739/0/376	24072/0/1219
$R[I>2$ and (I]	0.034	0.035	0.053
$R_{\text {w }}[I>2$ and (I]	0.080	0.096	0.142
Goodness-of-fit on F^{2}	0.89	1.02	0.92
Largest difference peak and hole (e \AA^{-3})	0.43 and -0.40	0.32 and -0.38	1.03 and -1.14

Scheme 1.

6

Scheme 2.

Cp anion from the monoarylated diene (1) supports the assignment of a single regiochemical relationship between the t - Bu and $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. Both sodium salts (3 and 4) are thermally stable (to at least $100^{\circ} \mathrm{C}$) but air-sensitive. ${ }^{13} \mathrm{C}$-NMR analysis of the monoarylated anion (3) provides evidence of the distal regiochemistry (Chart 1). The three signals assigned to the methine (CH) carbons at 108.2, 105.3, and 104.7 ppm exhibit long-range C-F couplings of 8,3 , and 8 Hz , respectively. In the observed distal regioisomer, two CH carbons would exhibit the larger four-bond coupling constant (8 Hz), and one CH carbon would exhibit a smaller five-bond coupling constant (3 Hz), whereas in the proximal regioisomer, two smaller coupling con-
stant and one larger coupling constant would be expected. This regiochemical assignment was ultimately confirmed by crystallographic analysis of the corresponding ferrocene derivatives.

Chart (1)

3.2. Metallocene synthesis

The arylated ligands ($\mathbf{3}$ and $\mathbf{4}$) reacted smoothly with FeBr_{2} in THF (Scheme 2) to afford high yields of the corresponding ferrocene complexes ($\mathbf{5}$ and $\mathbf{6}$). The monoarylated ligand (3) afforded a roughly 1:1 mixture of meso-5 and rac-5. By careful fractional crystallization from hexanes, we isolated pure meso- 5 from the first, third, and fifth crops of crystals. The second and fourth crops contained mostly rac-5. Purities of individual crops were established by ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$-NMR spectroscopy, and individual well-formed crystals were selected for crystallographic analysis (see below). Both complexes are crystalline solids having the dark orange color that is typical of ferrocene complexes. The tetraarylated ferrocene (6) was isolated as a deep red crystalline solid. All three complexes (meso-5, rac-5, and 6) are air-stable and were fully characterized by ${ }^{1} \mathrm{H}$-, ${ }^{19} \mathrm{~F}$-, and ${ }^{13} \mathrm{C}$-NMR spectroscopy as well as elemental microanalysis and single-crystal X-ray diffraction (see below).

3.3. Structural studies

The molecular structure of meso- $\mathbf{5}$ is shown in Fig. 1a. Selected metric data are provided in Table 2. Noteworthy is the absence of intramolecular arene stacking (Fig. 1b). A survey of prior studies of $1,1^{\prime}$-bis(pen-tafluorophenyl)-substituted ferrocene complexes (e.g. $7-9)$ reveal that the structure in which the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are engaged in π-stacking is the solid-state conformational minimum. However, based on Okuda's earlier investigations of $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ conformational dynamics in t-Bu-substituted ferrocenes, we also know that the transannular steric interaction of two $t-\mathrm{Bu}$ groups in either eclipsing $\left[\alpha \equiv \angle\left(t-\mathrm{Bu}-\mathrm{Cp}-\mathrm{Cp}^{\prime}-t-\mathrm{Bu}^{\prime}\right)=\right.$ 0°] or even gauche $\left(\alpha=36^{\circ}\right)$ conformations is strongly avoided [9]. These interactions prevent meso-5 from adopting a conformation $\left(\alpha \approx 0^{\circ}\right)$ that would enable stacking of the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. The actual conformation is defined by $\alpha=82.5^{\circ}$.
(a)

(b)

Fig. 1. Crystal structure of meso-5. (a) Thermal ellipsoid plot shown at 50% probability. H atoms were removed for clarity. F atoms are numbered as the attached C atoms. (b) Ball-and-stick diagram showing $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ conformation.

The molecular structure of rac-5 (Fig. 2, Table 2) supports this analysis. In rac-5, stacking of the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups (Fig. 2b) can be achieved without approaching conformational angles in which the two t - Bu engage in strong mutual repulsions. The observed conformation is defined by $\alpha=82.6^{\circ}$, nearly the same value as observed for meso-5. Interestingly, the $\mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{C}_{6} \mathrm{~F}_{5}$ stacking motif in rac-5 is 'tighter' than in other related complexes that we have analyzed. For example, the $\mathrm{C}_{6} \mathrm{~F}_{5}$ (centroid)- $\mathrm{C}_{6} \mathrm{~F}_{5}$ (centroid) distance of $3.39 \AA$ is nearly $0.2 \AA$ shorter than the non-butylated parent compound (7), which exhibits a corresponding distance of $3.58 \AA$ [3]. The angle of 4.4° between the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ planes of rac-5 also suggests a well-organized stacking arrangement. Corresponding interplanar angles in other $\mathrm{C}_{6} \mathrm{~F}_{5}$-substituted ferrocenes that we have studied range from 5° to $17^{\circ}[1,2]$. The $\mathrm{C}_{6} \mathrm{~F}_{5}$ (centroid)- $\mathrm{C}_{6} \mathrm{~F}_{5}$ (leastsquares plane) distances (3.225 and $3.271 \AA$) of rac-5 are less than $\mathrm{C}_{6} \mathrm{~F}_{5}$ (centroid) $-\mathrm{C}_{6} \mathrm{~F}_{5}$ (centroid) distance because of the tilting of aryl groups relative to their respective Cp ligands by 28 and 26°, respectively. Corresponding $\mathrm{Cp}-\mathrm{C}_{6} \mathrm{~F}_{5}$ tilting angles in 7 are both 25° [3].

Table 2
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for meso-5, rac-5, and $\mathbf{6}^{\text {a }}$

	meso-5	rac-5	6 a	6b		meso-5	rac-5	6a	6b
$\mathrm{Fe}-\mathrm{Cl}$	2.041(1)	2.056(1)	2.091(3)	2.071(3)	$\mathrm{Fe}-\mathrm{C} 6$	2.043(1)	2.049(1)	2.107(3)	2.111(3)
$\mathrm{Fe}-\mathrm{C} 2$	2.049(1)	2.049(1)	2.111(3)	2.116 (3)	$\mathrm{Fe}-\mathrm{C} 7$	2.047(1)	2.050(1)	2.076 (3)	2.087(3)
$\mathrm{Fe}-\mathrm{C} 3$	2.083(1)	2.079(1)	2.076(3)	2.077(3)	$\mathrm{Fe}-\mathrm{C} 8$	2.076(1)	2.080(1)	2.055(3)	2.050(3)
$\mathrm{Fe}-\mathrm{C} 4$	2.052(1)	2.061(1)	2.107(3)	2.104(3)	$\mathrm{Fe}-\mathrm{C} 9$	2.054(1)	2.056(1)	2.102(3)	2.103(3)
$\mathrm{Fe}-\mathrm{C} 5$	2.037(2)	2.037(1)	2.054(3)	2.054(3)	$\mathrm{Fe}-\mathrm{C} 10$	2.034(1)	2.038(1)	2.074(3)	2.081(3)
$\mathrm{Fe}-\mathrm{Cp} 1{ }^{\text {b }}$	$1.655(1)$	1.660(1)	1.698(3)	1.695(3)	$\mathrm{Fe}-\mathrm{Cp} 2{ }^{\text {b }}$	1.653(1)	1.659(1)	1.694(3)	$1.695(3)$
C1-C11	1.479(2)	$1.475(2)$	1.472(4)	1.490 (4)	C6-C61	1.476(2)	1.479(2)	1.476(4)	1.477(4)
C2-C21			1.481(4)	1.478(4)	C7-C71			1.489(4)	1.478(4)
C3-C31	1.522(2)	1.520(2)			C8-C81	1.524(2)	1.519(2)		
C4-C41			1.522(4)	1.518(4)	C9-C91			1.536(4)	1.525(4)
Cp1-Fe-Cp2 ${ }^{n}$	178	180	174	174	$\alpha^{\text {c }}$	83	83	100	102
$\beta 1^{\text {d }}$	22	29	39	35	$\beta 2{ }^{\text {d }}$	28	26	45	41
$\beta 3{ }^{\text {d }}$			44	47	$\beta 4^{\text {d }}$			29	32

[^1]
(b)

Fig. 2. Crystal structure of rac-5. (a) Thermal ellipsoid plot shown at 50% probability. H atoms were removed for clarity. F atoms are numbered as the attached C atoms. (b) Ball-and-stick diagram viewed along the $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ axis showing transannular arene stacking.

The molecular structure of $\mathbf{6}$ is shown in Fig. 3a. Rationalizing the observation that $6 \cdot \mathrm{CDCl}_{3}$ does not engage in intramolecular arene stacking requires closer inspection of transannular interactions (Fig. 3b). The F26-F72 and F16-F66 distances are 2.56 and 2.59, respectively. Turning the 'bottom' ligand to increase the stacking interaction between the C21-C26 and C61-C66 aryl substituents would decrease both of these F-F distances and introduce additional strain. The C16-C66 and C71-C76 aryl groups cannot twist about their $\mathrm{Cp}-\mathrm{C}_{6} \mathrm{~F}_{5}$ axes to relieve this strain because of transannular interactions with the tert-butyl groups via C44 and C94.

Neither meso-5, rac-5, nor $\mathbf{6} \cdot \mathrm{CDCl}_{3}$ exhibits intermolecular arene stacking. The packing diagram of meso -5 shows a pairwise $\mathrm{Cp}-\mathrm{C}_{6} \mathrm{~F}_{5}$ 'stacking' motif, but the Cp (centroid)-to- $\mathrm{C}_{6} \mathrm{~F}_{5}$ (centroid) distance of 3.828 and the Cp -to- $\mathrm{C}_{6} \mathrm{~F}_{5}$ interplanar angle of 29.4° suggest that this feature of the packing arragement is poorly organized and insignificant.

Additional metric data in Table 2 shows that while meso $\mathbf{5}$ and rac- $\mathbf{5}$ are relatively unstrained about their metallocene cores, the tetraarylated complex shows a slight 'bend' in the $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ angle (visible in Fig. 3a). The $\mathrm{Fe}-\mathrm{C}$ distances show that none of these complexes exhibits significantly 'slipped' or 'hinged' Cp ligands [6], although the carbon atoms ($\mathrm{C} 3, \mathrm{C} 8$) bearing the tertbutyl substituents tend to be more distant from the iron atom in meso- 5 and rac-5. The $\mathrm{Cp}-\mathrm{C}_{6} \mathrm{~F}_{5}$ interplanar
angles ($\beta 1-\beta 4$, Table 2) lie in the range $20-50$, typical of other $\mathrm{C}_{6} \mathrm{~F}_{5}$-substituted ferrocenes that we have studied [2]. These angles tend to the lower end of this range when additional steric constraints such as those imposed by bulky vicinal substituents are absent, whereas 6 exhibits β angles that are toward the upper end of the typical range. The longer $\mathrm{Fe}-\mathrm{Cp}$ distances in $\mathbf{6}$ also suggest that $\mathbf{6}$ shows transannular steric repulsion, because one would expect the additional electron-withdrawing $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups to decrease $\mathrm{Fe}-\mathrm{C}$ distances [7].

3.4. Dynamic NMR studies

The NMR spectra of 6 reveal an exchange process described in Fig. 4. The ligand substitution pattern alone suggests time-averaged $C_{2 h}(\mathbf{6 a})$ or $C_{2 v}(\mathbf{6 f})$ symmetry with all four Cp protons and all four $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups chemically equivalent. In fact, Hanusa and coworkers found that $\left[1,2,4-\mathrm{Cy}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{Fe}$ ($\mathrm{Cy}=$ cyclohexyl) adopts approximate $C_{2 h}$ symmetry in the solid state [8]. However, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{6}$ at $23{ }^{\circ} \mathrm{C}$ shows a pair of exchange-broadened signals. At room temperature, the two diastereotopic $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups

Fig. 3. Crystal structure of $\mathbf{6} \cdot \mathrm{CDCl}_{3}$. (a) Thermal ellipsoid plot shown at 50% probability. H and F atoms were removed for clarity. (b) Ball-and-stick diagram showing $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ conformations. Darkened F and dotted lines atoms indicate transannular $\mathrm{F} \cdots \mathrm{F}$ repulsions that prevent stacking of the C21-C26 and C61-C66 aryl substituents.

Fig. 4. Conformational analysis of 6. Boxed diagrams correspond to the crystal structure. Filled circle $=t e r t$-butyl; open circle $=\mathrm{C}_{6} \mathrm{~F}_{5}$ (Fig. 3).

Fig. 5. Eyring plot of rate constants for $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ rotation in 6 .
are also in the slow-exchange spectral regime in the ${ }^{19} \mathrm{~F}$-NMR spectrum. Lineshape analyses of the ${ }^{1} \mathrm{H}$ spectrum at several temperatures in the slow-exchange regime (-20 to $22{ }^{\circ} \mathrm{C}$, spectra are available from the corresponding author) and application of Eq. (1) lead to an Eyring plot (Fig. 5), from which we obtain the activation parameters $\left(\Delta H^{\ddagger}=17 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}\right.$, $\Delta S^{\ddagger}=6 \pm 6$ e.u., and $\left.\Delta G_{298}^{\ddagger}=15 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ for $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ rotation in 6. Notably, this enthalpy of activation is comparable to corresponding values obtained for hexakis(tert-butyl)ferrocene ($15 \mathrm{kcal} \mathrm{mol}^{-1}$) [9] but slightly higher than that obtained for hexakis(pentafluorophenyl)ferrocene ($11 \mathrm{kcal} \mathrm{mol}{ }^{-1}$) [1]. Examination of the crystal structure of $\mathbf{6}$ (Fig. 3) suggests that this exchange could be represented by the racemization $\mathbf{6 c} \rightleftarrows \mathbf{6 c} \mathbf{c}^{\prime}[5]$, probably proceeding via $\mathbf{6 a}$ to avoid the $t-\mathrm{Bu}-t-\mathrm{Bu}$ interaction in $\mathbf{6 f}$. Estimating the $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ and $\mathrm{Cp}-\mathrm{C}_{6} \mathrm{~F}_{5}$ rotational barriers was not achieved for meso $\mathbf{- 5}$ and rac-5, because we were unable to observe the slow-exchange regimes of the ${ }^{19} \mathrm{~F}$-NMR spectra even after cooling the samples to $-90^{\circ} \mathrm{C}$.

4. Conclusions

A single tert-butyl substituent on the Cp anion directs arylation by $\mathrm{C}_{6} \mathrm{~F}_{6}$ to distal positions. Isomeric ferrocene complexes bearing one $t-\mathrm{Bu}$ and one $\mathrm{C}_{6} \mathrm{~F}_{5}$ group on each Cp ligand exhibit intramolecular arene stacking only if the stacking conformation is consistent with the conformational preferences of opposing $t-\mathrm{Bu}$ groups.

5. Supplementary material

The following data are available from the corresponding author: NMR data for $\mathbf{3}$ and 4, variable-temperature ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{6}$ and an associated table of rate data.

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 154483, 154484, and 154485, for compounds rac-5, meso $-5,6 \cdot \mathrm{CDCl}_{3}$, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported in part by a grant from the Jeffress Memorial Trust to W.G.H., a Roanoke College Summer Scholarship to C.E.K., and the Virginia Tech Chemistry Department.

References

[1] (a) M.P. Thornberry, C. Slebodnick, P.A. Deck, F.R. Fronczek, Organometallics 19 (2000) 5352;
(b) M.P. Thornberry, C. Slebodnick, P.A. Deck, F.R. Fronczek, Organometallics 20 (2001) 920.
[2] P.A. Deck, M.J. Lane, J.L. Montgomery, C. Slebodnick, F.R. Fronczek, Organometallics 19 (2000) 1013.
[3] M.D. Blanchard, R.P. Hughes, T.E. Concolino, A.L. Rheingold, Chem. Mater. 12 (2000) 1604.
[4] P.A. Deck, W.F. Jackson, F.R. Fronczek, Organometallics 15 (1996) 5287.
[5] (a) A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, Organometallics 15 (1996) 1518;
(b) D.F. Shriver, M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds, Wiley, New York, 1986.
[6] (a) T.B. Marder, J.C. Calabrese, C.D. Roe, T.H. Tulip, Organometallics 6 (1987) 2012;
(b) S.A. Wescott, A.K. Kakkar, G. Stringer, N.J. Taylor, T.B. Marder, J. Organomet. Chem. 394 (1990) 777;
(c) J.W. Faller, R.H. Crabtree, A. Habib, Organometallics 4 (1985) 929;
(d) R.T. Carl, R.P. Hughes, A.L. Rheingold, T.B. Marder, N.J. Taylor, Organometallics 7 (1988) 1613;
(e) R.T. Baker, T.H. Tulip, Organometallics 5 (1986) 839.
[7] P.G. Gassman, C.H. Winter, J. Am. Chem. Soc. 110 (1988) 6130.
[8] J.A. Burman, M.L. Hays, D.J. Burkey, P.S. Tanner, T.P. Hanusa, J. Organomet. Chem. 479 (1994) 135.
[9] (a) J. Okuda, Top. Curr. Chem. 160 (1991) 97;
(b) J. Okuda, E. Herdtweck, Chem. Ber. 121 (1988) 1899;
(c) C. Janiak, H. Schumann, Adv. Organomet. Chem. 33 (1991) 291;
(d) J. Okuda, J. Organomet. Chem. 367 (1989) C1;
(e) E.W. Abel, N.J. Long, K.G. Orrell, A.G. Osborne, V. Šik, J. Organomet. Chem. 403 (1991) 195.

[^0]: * Corresponding author. Tel.: + 1-540-231-3493; fax: $+1-540-231-$ 3255.

 E-mail address: pdeck@vt.edu (P.A. Deck).
 ${ }^{1}$ Undergraduate research participant.

[^1]: ${ }^{\text {a }}$ Crystalline $\mathbf{6}$ shows two nearly identical molecules per asymmetric unit, designated $\mathbf{6 a}$ and $\mathbf{6 b}$.
 ${ }^{\mathrm{b}} \mathrm{Cp} 1$ and Cp 2 are the centroid of $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 10$, respectively.
 ${ }^{\mathrm{c}} \alpha$ is the torsion angle $\mathrm{C}(t-\mathrm{Bu})-\mathrm{Cp} 1-\mathrm{Cp} 2-\mathrm{C}(t-\mathrm{Bu})$ (absolute value).
 ${ }^{\mathrm{d}} \beta 1-\beta 4$ are Cp -aryl interplanar torsion angles (absolute values). $\beta 1$: ($\mathrm{C} 1-\mathrm{C} 5$)-(C11-C16); $\beta 2$: ($\mathrm{C} 1-\mathrm{C} 5$)-(C21-C26); $\beta 3$: ($\left.\mathrm{C} 6-\mathrm{C} 10\right)-(\mathrm{C} 61-\mathrm{C} 66)$; and $\beta 4$: $(\mathrm{C} 6-\mathrm{C} 10)-(\mathrm{C} 71-\mathrm{C} 76)$.

